7000 SERIES
 PLUG-INS

CONTENTS
Amplifiers
Wideband Single Channel 213
Programmable Digitizer 214, 315
Dual Trace 215
Logic Triggered 216
Differential 218
Curve Tracer 219
Time Bases
Delayed 220, 223
Δ Delaying 220, 223
Single 220, 224
Dual 223, 224
Digital
Multimeter 225
Delay 226
A/D Converter 227
Universal Counter/Timer 228
Spectrum Analyzers 154, 229
Sampling 230

For the 7000 Series, you can select from over forty different plug-in units-singletrace and dual-trace amplifiers, differential comparators, samplers, logic analyzers, spectrum analyzers, trigger recognizers, waveform digitizer, curve tracer, universal counter/timer, digital multimeter, digital delay unit, a wide range of time-bases, and others. This variety lets you tailor your instrument to meet your immediate need-for the most exctic application-and then expand its capabilities later as your needs change.

Tektronix offers service training classes on various 7000 Series plug-ins. For further training information, contact your local sales/service office or request a copy of the Customer Service Training Catalog on the return card in the back of this catalog.

7429
Dc to 1 GHz Bandwidth
$10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$ Calibrated Deflection Factors

50Ω Input

$\pm 500 \mathrm{ps}$ Variable Delay Line (Option 04)
The 7A29 is a high-performance, wide-band, single-trace amplifier which provides a band width of 1 GHz in the 7100 Series mainframes. Bandwidth constant over the entire range of calibrated deflection sensitivities of $10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} /$ div. Input impedance is 50Ω. Manually resettable input protection circuitry protects the input against most common overioads. Polarity of the display is selectable by a front panel switch. An optional variable delay line (front-panel adjustable) permits matching the transit time of two 7A29s and/or probes to better than 10 ps .
CHARACTERISTICS

Bandwidth - De Coupled: $1 \mathrm{GHz}(10 \mathrm{mV} / \mathrm{div}$ to $\mathrm{V} / \mathrm{div}$)
Deflection Factor - Calibrated: $10 \mathrm{mV} / \mathrm{div}$ to 1 V /div in seven steps ($1-2 \cdot 5$ sequence). Accuracy is within 2% with gain adjusted at $0.1 \mathrm{~V} / \mathrm{div}$. Uncalibrated: Variable continuously between steps and a maximum of at least 2.5 V/div (with some bandwidth recuction).
Input $Z=50 \Omega$.
Ac Coupling - -3 dB at 1 kHz or less from a 50 ? source.
Option 04, Variable Signal Delay - Permits matching the transit time of two preamps and probes to better than 10 ps . Range is $\pm 500 \mathrm{ps}$.
Maximum Input Voltage - Dc Coupled: 50 V or 10 V RMS (whichever is less). Ac Coupled: 100 V additional
Dc Stability - Drift with Ambient Temperature (Line voltage Constant): $0.04 \mathrm{div} /^{\circ} \mathrm{C}$ or less.
Input Protection - Internal detection circlitry provides protection by automatically disconnecting excessive signals of up to 50 V . The "disconnected" condition is indicated and has manual reset.

ORDERING INFORMATION

7A29 Amplifier

\$3,245
Includes: Instruction manual (070-2320-00).
Option 04 - Variable Signal Delay. $\quad \mathbf{\$ 4 3 5}$

P6201 ${ }_{\text {fet probe }}$

De to 900 NHz Bandwidth
50 S or 1 M Inputs
Very low input capacitance permits high frequency signal acquisition with minimum loading while high input resistance minimizes low frequency and do loading. Aequires probe power (either from scope or 1101A Probe Power Supply.

ORDERING INFORMATION

P6201 1X, FET Probe.
Order 010-6201-01

7A19

Dc to 600 mbz Banctwidth
$10 \mathrm{mv} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{di}$
Calibrated Detlection factors

500 Input

± 500 po Variable Delay Line (Option 04)
The 7A19 is a high-performance, wide-band, single-trace amplifier which provides a bandwidth of 600 MHz in the 7100 Series mainframes. Bandwidth is constant over the entire range of calibrated deflection sensitivities of $10 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$. Input impedance is 50 . An optional variable delay line (front-panel adjustable) permits matching the transit time of two 7A19s andior probes to better than 50 ps .

CHARACTERISTICS

Bandwidth - Dc Coupled: 600 MHz ($10 \mathrm{mV} /$ div to $1 \mathrm{~V} / \mathrm{div}$).
Deflection Factor - - Calibrated: $10 \mathrm{mV} / \mathrm{div}$ to 1 Vidir in seven steps ($1-25$ sequence). Accuracy is within 3%.
Input \mathbf{Z} - 50Ω.
Option 04, Variable Signal Delay - Permits matching the transit time of two preamps and probes to better than 50 ps. Range is $\pm 500 \mathrm{ps}$.
Maximum Input Voltage - Dc Coupled: 50 V or 10 V RMS (whichever is tess). Ac Coupled: 100 V additional.
Dc Stability - Orift with Ambient Temperature (Line Voltage Constant): $100 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or less.

ORDERING INFORMATION	
7A1s Amplifier $\$ 2,825$ Includes: instruction manual (070-2199-0)	
Option 04 - variable Signal Delay. $+\$ 435$	

7A16A

De to 225 kidz Bandwidth
$5 \mathrm{~m} / \mathrm{div}$ to $3 \mathrm{~V} / \mathrm{diy}$
Calibrated Deflection Factors

1 Ho lnout

The 7A16A is a single-trace amplifier which provides a bandwidth of 225 MHz in the 7900 and 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivities of $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$. Bandwidth may be limited to 20 MHz to reduce displayed noise in lowerfrequency applications.

CHARACTERISTICS

Bandwidth - Dc Coupled: $5 \mathrm{mV} / \mathrm{civ}$ to $5 \mathrm{~V} / \mathrm{div}$; 250 MHz . Ac Coupled: 10 Hz or less to 250 MHz . Deflection Factor - Calibrated: $5 \mathrm{mV} / \mathrm{div}$ to 5 Vidiv in 10 steps (1.25 sequence). Accuracy is within 2% with gain adjusted at $10 \mathrm{mV} / \mathrm{div}$. Uncalibrated: Variable continuously between steps to at least $12.5 \mathrm{~V} / \mathrm{div}$.
Input R and $C-1 M \Omega$ within $2 \% ; 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V ($\mathrm{dc}+$ peak ac), ac component 500 V p.p maxi mum, 1 kHz or less. Ac Coupled: 500 V (dc + peak ac), ac component 500 V p-p maximum. 1 kHz or less.
De Stability - Drft with Ambient Temperature (Line Voltage Constant): $0.02 \mathrm{div} /{ }^{\circ} \mathrm{C}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 div in any one minute after one hour warm up.
Displayed Noise - $\leqslant 0.1$ div at $5 \mathrm{mV} / \mathrm{div}$ (with a 7900 Series mainframe).

ORDERING INFORMATION
7A16A Amplifier
Includes: Instruction manual (070-1378-01).

Dc to 150 MHz Amplifier

7A15A

Dc to 80 MHz Amplifier

7D20

Programmable Digitizer

7A17
De to 150 MHz Bandwidth
50 mV ／div Calibrated Deffection Factor

Low Cost

Easy to Customize
The 7A17 is a basic， 150 MHz single－chan－ nel amplifier with provision for the addition of user－developed circuitry for special unique applications．
The layout of the circuit board assembly provides a blank soldering pad matrix and ground plane surface totaling approximately 40 square inches．Circuits may be installed here．Mainframe power is identified and available on the circuit board．The front sub－ panel is prepunched with holes of various sizes and shapes which allow for the mount－ ing of connectors，switches，indicators，etc．

CHARACTERISTICS
Deflection Factor－Adjustabie to $50 \mathrm{mV} / \mathrm{div}$ ． There is no step altenuation．
Input $\mathbf{Z}-50 \Omega$ ．
Maximum Input Voltage－ 5 V RMS．

ORDERING INFORMATION

$7 A 17$ Amplifier
Includes：Instruction manual（070－1263－00）．

For iccommended probes tefer to pages 391 and 426. For 7000 Setes vertical system specificitions see page 190 ．

7A15A

DC to 80 MHz Eandwidth
$5 \mathrm{mV} / \mathrm{div}$ to 10 Vidiv
Calibrated Deflection Factors
1 Me？Input
500μ V／div at 10 MHz （ $10 \times$ Gain）
The 7A15A is a single－trace amplifier which provides a bandwidth of $80 \mathrm{MH}-2$ in the 7800 ． 7900 ，and 7100 Series mainframes．Band－ width is constant over the entire range of de－ flection sensitivities of $5 \mathrm{mV} /$ div to $10 \mathrm{~V} / \mathrm{div}$ ．A 10X gain amplifier provides $500 \mu \mathrm{~V}$ sensitivity with a bandwidth of 10 MHz ．Polarity of the display is selectable by a front－panel switch．
CHARACTERISTICS

Bandwidth－DC Coupled： 80 MHz （ $5 \mathrm{mV} /$ div to $10 \mathrm{~V} /$ diviv）．Ac coupled： 10 Hz of less to 80 MHz ． Deflection Factor－Calibrated． $5 \mathrm{mV} / \mathrm{d}_{\mathrm{div}}$ to 10 V idiv in 11 steps（ $1.2 \cdot 5$ sequence）．Accuracy is within 2% with gain adiusted al $10 \mathrm{mV} / \mathrm{div}$ ．$\times 10$ mag （increases sensitivity io $500 \mu \mathrm{~V}$ ）accuracy is within 10% at 10 MHz bandwidth throughout deflection factor settings．Uncalibrated：Variable continuously between steps 10 a maximum of at least 25 Viciv． Input R and C－1 M 2 within $2 \% ; 20 \mathrm{pF}$ ．
Maximum Input Voltage－Dc Coupled： 250 V （dc＋peak ac），ac component 500 V p－p maxi－ mum， 1 kHz or less．Ac Coupled： 500 V （dc＋peak ac），ac component 500 V p－p maximum， 1 kHz or less．
Dc Stability — Dift with Ambient Temperature （Line Voltage Constant）： 0.01 div／ C° Drift with Time （Ambient Temperature and Line Voltage Constant）： 0.02 div in any one minute atter one hour warm－up．

ORDERING INFORMATION

7A15A Amplifier $\$ 695$
Includes：Instruction manual（070－1210．00）．
For Hoating measurements，order A6902B Isolator．See page 437 for complete description．

7D20

GPIB的是纸

The 7D20 complies with IEEE Standard 488.1978 ，and with Tektronix Standard codes and Formats
Digital Storage for 7000 Series Mainframe
Totally Programmable
70 MHz Bandwidth for Repetitive Signals
10 MHz Single－Shot Bandwidth
Two Channels Simultaneous Acquisition
Pretrigger and Posttrizger
Storage of Six Independent Waveforms
Enveloping and Signal Averaging

Cursor Measurements

The 7D20 brings state－of－the－art digital perfor－ mance to Tektronix 7000 Series mainframes and rackmounts．See page 315 for complete description．（Not recommended for use in the 7104 and R7103 mainframes）．

ORDERING INFORMATION

7 D20 Programmable Digitizer
\＄7，265
RECOMMENDED PROBE
P6053B Miniature 10X Probe－Has a
probe identification bution which allows remote sequencing．

3．5 Foot Cable－Order 0106053 11	$\$ 170$
6．0 Foot Cable－Order $010-6053.13$	$\$ 170$
9.0 Foot Cable－Order 0106053.15	$\$ 170$

Dc to 400 MHz Amplifier

Dc to 200 MHz Amplifier

7A18A

De to 75 MHz Amplifier

7A24

De to 400 MHz Bandwidth
$5 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$
Calibrated Deflection Factors
50Ω input
The 7A24 is a high performance, wide-band, dual-trace amplifier which provides 400 MHz bandwidth in the 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivies from $5 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$. Input impedance is 50Ω. The 7A24 features five operating modes, trigger source selectability and trace identify.

CHARACTERISTICS

Bandwidth - Dc Coupled: 400 MHz ($5 \mathrm{mV} /$ div to $1 \mathrm{~V} / \mathrm{div}$)
Deflection Factor - Calibrated: 5 mV/div to 1 Vidiv in eight steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted to $5 \mathrm{mV} / \mathrm{div}$. Uncalibrated: Variable continuously between steps to a meximum of at least $2.5 \mathrm{~V} / \mathrm{div}$.
Input Z - 50Ω within 0.5%; vswr 1.251 or less at $5 \mathrm{mV} / \mathrm{div}$ and $10 \mathrm{mV} / \mathrm{div}$, $1.15: 1$ or less from $20 \mathrm{mV} / \mathrm{div}$ to $1 \mathrm{~V} / \mathrm{div}$ at 250 MHz
Maximum Input Voltage - Dc Coupled: 5 V PMS.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): 0.02 div/ ${ }^{\circ} \mathrm{C}$. Drift with
Time (Ambient Temperature and Line Voltage Constant): 0.02 div in any one minute after one hour warm-up.
Displayed Noise - 0.7 div or less at $5 \mathrm{mv} /$ div (with a 7900 Series mainframe).
Common-Mode Rejection Ratio - At least $10: 1$. dc to 50 MHz

ORDERING INFORMATION

7A24 Amplifer
\$2,590
includes: Instruction manual (070-1485-00)

7A26
Dc to 200 MHz Bandwidth
$5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$
Calibrated Deflection Factors
1 M 2 Input
The 7A26 is a dual-trace amplifier which provides a bandwidth of 200 MHz in the 7900 and 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivities of $5 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div. Bandwidth may be limited to 20 MHz to reduce displayed noise in lower-frequency applications. The 7A26 features five operating modes, trigger source selectability and trace-identify.

CHARACTERISTICS

Bandwidth - Dc Coupled 200 MHz ($5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$). Ac Coupled. 10 Hz or less to 200 MHz ($5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$)
Deflection Factor - Calibrated; $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} /$ div in ten steps ($1.2-5$ sequence). Accuracy is within 2% with gain adjusted at 10 mvidiv. Uncalbrated: Variable continuously between steps to a maximum of at least $12.5 \mathrm{~V} / \mathrm{div}$.
Input R and C - $1 \mathrm{M} \Omega$ within $2 \% ; 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less. Ac Coupled: 500 V (de + peak ac), ac component 500 V pp maximum, 1 kHz or less.
Dc Stability - Drift with Ambient Temperature (Line Voltage Constant): $0.02 \mathrm{div} /{ }^{\circ} \mathrm{C}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 division in any one minute after one hour warm-up.
Displayed Noise - 0.1 div or less at $5 \mathrm{mV} / \mathrm{div}$ (with a 7900 Series mainframe).
Common-Mode Rejection Ratio (Add, CH 2 Invert) - At least $10: 1$ de to 50 MHz .

ORDERING INFORMATION

7A26 Amplifier
Includes: Instruction manual (070-1484-01).

For recommended Probes sze pages 131 and 425.
For 7000 series vertical system spacifications see page 190.

7A18A

Dc to 75 MHz Bandwidth
$5 \mathrm{mV} / \mathrm{diy}$ to $5 \mathrm{~V} / \mathrm{diy}$
Calibrated Deflection Factors

1 MS Input

Dc Offset (Option 06)
The 7A18A is a dual-trace amplifier which provides a bandwidth of 75 MHz in the 7800,7900 and 7100 Series mainframes. Bandwidth is constant over the entire range of deflection sensitivities of $5 \mathrm{mV} /$ div to $5 \mathrm{~V} / \mathrm{div}$. The 7A18A features five operating modes, trigger source selectability, and a trace-identify function.

CHARACTERISTICS

Bandwidth - Dc Coupled: $75 \mathrm{MHz}(5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$). Ac Coupled: 10 Hz or less to 75 MHz ($5 \mathrm{mV} /$ div $105 \mathrm{~V} / \mathrm{div}$)
Deflection Factor - Calibrated: $5 \mathrm{mV} / \mathrm{div}^{2}$ to 5 V/div in ten steps ($1-2-5$ sequence). Accuracy is within 2% with gain adjusted to $10 \mathrm{mV} /$ div. Uncalibrated: Variable continuously between steps to a maximum of at leas: $12.5 \mathrm{~V} / \mathrm{div}$.
Input R and $C-1 M \Omega$ within $2 \% ; 20 \mathrm{pF}$.
Maximum Input Voltage - Dc Coupled: 250 V ($\mathrm{dc}+$ peak ac), ac component 500 Vp -p maximum, 1 kHz or less. Ac Coupled: 500 V (dc + peak ac), ac component 500 V p-p maximum, 1 kHz or less.
Dc Stability - Drift with Ambient Ternperature (Line Voltage Constant): $0.01 \mathrm{div}^{\circ} \mathrm{C}$. Drift with Time (Ambient Temperature and Line Voltage Constant): 0.02 div in any one minute after one hour warm-up.
Displayed Noise - 0.06 div or less.
Common-Mode Rejection Ratio (Add, CH 2
Invert) - At least $10: 1$, dc to 50 MHz .

DC OFFSET OPTION

Option 06, Dc Offset - Allows small signals riding on larger signals, such as power supply ripple, to be analyzed. Separate Channel 1 and Channel 2 variable offset controls are concentric with the position controls replacing the identify push-buttons of the stanctard 7A18A. The ac-dcground switch of each channel is expanded to accommodate a fourth position for dc offset
Offset Range Display $- \pm 200$ division maximum, equivalent to $\pm 1 \mathrm{~V}$ at $5 \mathrm{mV} / \mathrm{div}$.
Accuracy - When in do Offset the deflection accuracy is derated by 1%.

ORDERING INFORMATION	
7A18A Amplifier	
Includes: insiruction manual $(070-4329-00)$.	$\$ 1,395$
Option 06 - Dc Offset.	$+\$ 210$

For floating measurements, order A6902日 Isalator. See page 437 for complete description.

The 7A42 Four Channel Logic Triggered Vertical Amplifier is a two-wide 7000 Series plug-in that provides a significant new dimension to oscilloscope measurements through the combination of amplifier and triggering technologies. The 7A42 triggering permits all signals to be displayed in analog form for high resolution measurements of both time and amplitude characteristics.

High Resolution Analog Display of Digital Signals

Very accurate analog representations of digital signals are displayed. mput attenuators can be optimized for either TTL or ECL logic families. A 1 ns risetime with 200 ps or less delay difference between the four input channels provides precise, high resolution timing measurements. The 7A42 accurately displays risetimes and falltimes, allows pulse with to be precisely measured, enables puise aberrations to be viewed and quantified, and amplitude to be measured with confidence.

Advanced Triggering

Triggers are generated by the 7A42 upon recognition of user-programmed Boolean combinations of logic levels and transitions at any or all of its input channels. Independent variable switching thresholds and edge sensitivity make triggering on digital signals an easy task.

Nested Triggering Functions

One level of nested triggering is implemented in the 7A42. Triggers may be generated on event " A ", event " B ", or on " A then B ". In " A then B " mode, the 7A42 arms on event A, and generates a trigger to a time base on the next occurrence of event B. A reset input disarms the 7A42 in nested triggering mode at any time. Nested triggering provides the flexibility needed to trigger on even the most complex event.

See The Trigger Event

Delay lines in the 7A42 permit the trigger event to be displayed in its entirety. A representation of the 7A42 Trigger Out signal can be displayed on the mainframe CRT. This Trigger View trace shows where the trigger event occurred and how long it lasted.

Trigger Filtering Prevents Inadvertent Triggering

A continuously variable (equal to or greater than 300 ns) trigger filter control eliminates unnecessary or inadvertent triggering by requiring that a trigger function remain true longer than the Trigger Filter setting.

External Clock Synchronization

An external clock input allows further qualifi. cation of a triggering event to coincide with either a positive or negative transition of an exiernal clock signai. This input is compatible with either TTL or ECL levels.

Special Probe Features

The 7A42 Frobe Offset accommodates the P6230 Variable Bias/Offset Probe, which is ideal for probing ECL circuits with reduced loading. The P 6230 is a $1.5 \mathrm{GHz}, 450 \Omega$ probe with the ability to place bias voltage at its tip. A wide variety of accessories, including very flexible grounding schemes, make the P6230 ideal for high speed digital circuit testing. The P6131 10X high impedance probe is the recommended probe for TTL, high speed TTL, CMOS and other high impedance logic families.

Easy Setup

CRT readout of attenvator settings and the display of error messages designed to guide a user through the process of setting up the instrument make the 7A42 easy to operate. The use of multicolored LEDs communicate the status of other 7A42 functions at a glance. A battery backup system preserves the current settings when power is removed and reapplied, thus saving setup time.

CHARACTERISTICS VEFTICAL SYSTEM

input - Four channels, BNC connectors. Deflection Factor - Calibrated Through 10X Probe: TTL (CMOS) famly is 1,2 , $5 \mathrm{~V} / \mathrm{div}$. ECL family is $0.2,0.5$, $1 \mathrm{~V} / \mathrm{div}$. Gain Accuracy: Within 3%.
Bandwidth - To 350 MHz maximum. See 7000 Series Vertical System Specifcations on page 190 for trequency response in specific mainframes.
Input Impedance - Selectable between 1 M 8 and 50Ω. High Impedance: $1 \mathrm{M} \Omega$ $\pm 1 \%$, in paraller with $\approx 15 \mathrm{pF}$. Low impedance: $50 \Omega \pm 1 \Omega$ at dc. Vswr is $\$ 1.15: 1$, de to 300 MHz .
Maximum Input Voltage - $1 \mathrm{M} 9: 25 \mathrm{~V}$ (dc + peak ac) 36 MHz or less, derated linearly to 3 V (peak ac) at $300 \mathrm{MHz}, 50 \mathrm{~N}$: $5 \vee$ RMS during any 1 ms time interval. Active internal protection opens all inputs if overvoltage is applied to any channe!.
De Stability - Drift with Time (Ambient Temperature and Line Voltage Constant): Not more than 0.2 division in any 10 minute after 20 minute warmup. Drift with Ambient Temperature (Line Voltage Constant): Not more than 0.2 div for $10^{\circ} \mathrm{C}$ ambient change.
Differential Delay - 200 ps maximum between the four input channels.
Trigger View or External Clock View - Time Coincidence with Channel Display: Trigger View is within 3 ns . External Clock View is within 5 ns .

TRIGGER SYSTEM

Switching Threshold - Voltage Range ${ }^{*}$: TTL (CMOS) family is +12.8 V to -12.7 V . ECl family is +2.56 V to -2.54 V . Accuracy ${ }^{*}$. TTL (CMOS) family is $\pm 50 \mathrm{mV} \pm 2 \%$ of setting. ECL family is $\pm 10 \mathrm{mV} \pm 2 \%$ of setting.
Presets ${ }^{* 1}$ TTL (CMOS) is +1.4 V . ECL is -1.3 V . Probe Offset activated is 0 V .
Tip (Probe Offset) Input - Maximum Voffage Aange: +5.1 V to -5.1 V . dc only. DVM Accura$\mathrm{cy}: \pm 20 \mathrm{mV} \pm 2 \%$ of reading.
Trigger Filter - Range: Off, or adjustable from $\leq 15 \mathrm{~ns}$ to $>300 \mathrm{~ns}$. Match. Trigger Function A to Trigger Function B: Within 20% at maximum setting.
External Clock Input - Maximum Voltage Range: +5 V to $-5 \mathrm{~V}(\mathrm{dc}+$ peak ac). Threshold: Two External Clock input modes are available, TTL or ECL. TTL level at logic zero is 50.8 V ; at logic one is $\geqslant 2 \mathrm{~V}$ ECL level at logic zero is $\leqslant-1.5 \mathrm{~V}$; at logic one is $\geq-1.1 \mathrm{~V}$. input Impedance: T IL level is $\approx 10 \mathrm{~K} \Omega$ in paratlel with $\approx 55 \mathrm{pF}$, terminated to +5 V , compatible with a $1 \times$ probe. ECL level is $\approx 50 \Omega$. lerminated to -2 V . Pulse Width: TTL level is 20 ns minimum: either pulse transition selected ECL level is 5 ms minimum, leading pulse transition selected; or 10 ns minimum, trailing pulse transition selected. Setup Time: 10 ns minimum. Hold Time: 10 ns miinimum.
Channel Edge Sensitivity - Selup Time, Channel to Channel: 5 ns minimum (time that level sensitive portion of trigger function must be true before Edge Sensitive Channel transition).

[^0]Hold Time, Channel to Channel: 5 ns minimum, (time that level sensitive portion of trigger function must remain true after Edge Sensitive Channel transition). Setup Time, Edge Sensitive Channel: 10 ns minimum (time that level of Edge sensitive channel must be stable before transition). Hold Time, Edge Sensitive Channel: 5 ns minimum (time that level of Edge Sensitive Channel must remain stable after transition).
Trigger Out Connector - Output Voltage: 1 V into 50Ω. Output Impedance: $\approx 50 \Omega$. Toggle Frequency: 125 MHz maximum. Propagation Delay: Channel Input to Trigger Output is 25 ns or less. A then B Mode: Time between A and B is 5 ns minimum (minimum setup time from event A to event B). Time from B to A is 5 ns minimum (minimum time after event B to next event A). Event Duration (minimum time to insure proper arming and

Four Channel Analog Display with Trigger View

Up to four logic signals can be displayed by the 7A42 in true analog form. Additionally, the Trigger View trace provides the ability to view exactly when the programmed Trigger Function is satisfied.

Range of Sensitivities

Three display sensitivities are available for each of the logic farmilies. Select the most convenient display size for the application; small amplitudes for many traces on the screen, or large sizes when more signal detail is desired.
triggering): Event A is 5 ns minimum. Event B is 5 ns minimum. Front panel A then B Gate Output: Active only if selected and in the A then B mode. Mainframe A Then B Gate Output - Active only in A then B mode. Pulse Width (Measured at the 50% Points): Greater than the time between event A and event B by $5 \mathrm{~ns} \pm 2 \mathrm{~ns}$.
Reset Input - Maximum Input Voitage: +5 V to --5 V (dc + peak ac). Input Impedance: $\approx 50 \Omega$. Logic Zero Level: $\leqslant 0.2 \mathrm{~V}$. Logic One Level: $\geqslant 0.8 \mathrm{~V}$. Pulse Width: 100 ns minimum. Timing (Post-Reset Inhibit Time to Next Trigger): 10 ns minimum (time from falling edge of Reset to next recognizable event).
Response Time: Reset pulse must lead or be coincident with event recognition to inhibit trigger output. Event recognition must lead the Reset pulse by 10 ns to guarantee trigger output.

Selective Triggering on a Low Amplitude

 Pulse
independent and variable trigger thresholds for each of the four input channels allow selective triggering on an abnormally low amplitude pulse (indeterminate state) within a puise train. Shown above, two channels are used to establish dual thresholds to bracket the low level puise. The 7A42 triggers on any signal that remains between the two thresholds longer than the time sel by the Trigger Filter.

Edge Sensitive Triggering

Data bus transitions are generally not allowed during a specified time at the end of a microprocessor read cy cle. In the above display, the 7A42 has captured a posi tive transition of a data line during the time when data should have been stable (nole trigger view pulse). The 7A42's Edge Sensitivity enhances its Boolean triggering by detecting rising or falling transitions of one signal during a time qualified by the states of the other channels.

BATTERY BACXUP

Ni-Cad Battery (3.75 V) - Provides power to preserve front panel control status a minimum of 200 hours white main power is off. Battery requires about 24 hours to fully charge from discharged condition.

ORDERING INFORMATION

7A42 Logic Triggered Vertical Amplifier \$6,050 Includes: Instruction manual (070-4285-00).

OPTIONAL ACCESSORIES

P6230 Variable Bias/Offset 10X Probe

The P6230 probe is recommended for high speed ECL probing. It is a very low capacitance, high bandwidth. probe ideal for ECL and features a variable bias/offset that minimizes its dc loading on the circuit. See page 434 for details.

Order 010-6230-01

P6131 10X Passive Probe

The P6131 is a general purpose probe, ideal for use with IIL. and CMOS circuits, and is recommended for use with the 7A42 for up to 300 MHz system bandwidth. Sev eral subminiature and miniature accessories are also available including a probe-to-DIP for K testing. See page 433 for details.

Order 010-6131-01

KLIPKIT - Provides hands-free connection to integrated circuits. See page 433 for complete description. Order 013-0197-00

Dual Time Base
7B53A/7B50A
5 ns/div to 5 s/div Calibrated Time Ease
Triggering to $100 \mathrm{MHz}(7 \mathrm{E} 53 \mathrm{~A})$ and 150 MHz (7E50A)
Variable Trigger Holdolf (7E50A)
P-P Auto Triggering (7B50A)
Single Sweep Operation
Calibrated hixed Sweep (7E53A)
TV Sync Separator Triggering
(7E53A Option 05)

The easy-to-use 7B53A and 7B50A Time Bases are recommended for use with 7600 Series mainframes to provide optimum bandwidth/sweep speed compatibility. They may, however, be used in any 7000 Series mainframe to provide sweep rates of $5 \mathrm{~ns} / \mathrm{div}$.
The 7B53A provides normal, intensified delaying, delayed, and mixed sweep.

CHAFACTERISTICS (7B53A)
DELAYING EVEEP
Sweep Rate - Calibrated: $50 \mathrm{~ns} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$ in 25 steps (1.25 sequence). $5 \mathrm{~ns} / \mathrm{div}$, the fastest calibrated sweep rate, is obtained with the X10 Magnifier. Uncalibrated: Variable continuously between steps to at least 2.5 times the calibrated sweep rate. The variable control is internally switchable between main, delayed-sweep, and variable main-sweep holdoff.

7B50A

Time Base
Sweep Accuracy - Measured over the center eight divisions.

Timejoiv	Unmagnilied		Magnitied	
	$\left\|\begin{array}{c} +15^{\circ} \mathrm{C} \\ +35^{\circ} \mathrm{C} \end{array}\right\|$	$\begin{aligned} & 0^{\circ} \mathrm{C} 10 \\ & +50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & +15^{\circ} \mathrm{C} \text { to } \\ & +35^{n} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +50^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
5 s/div to $1 \mathrm{~s} / \mathrm{div}$	3\%	4\%	Unspecified	Unspecified
$50 \mathrm{~ms} / \mathrm{div}$ to $0.5 \mu 5 / \mathrm{div}$	2%	3%	2.5\%	4\%
$0.2 \mu \mathrm{~s} / \mathrm{div}$ to Q. $05 \mu \mathrm{~s} / \mathrm{div}$	3\%	4\%	3.5\%	5\%

Delay Time Multiplier Range - 0 to to times the Delay Time/Div setting from 5 s/div to $1 \mu \mathrm{~s} / \mathrm{div}$.
Differential Delay Time Measurement Accuracy - $5 \mathrm{~s} / \mathrm{div}$ to $1 \mathrm{~s} / \mathrm{div}: \pm 1.4 \%$ of measurement $+0.3 \%$ of full scale. 0.5 s/civ to 1μ sidiv: $\pm 0.7 \%$ of measurement $+0.3 \%$ of full scale. Full scale is ten times the Delay Time/Div setling. Accuracy applies over the center 8 DTM div from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Delay Time Jitter - 0.05% or less of Time/Div setling.

Coupling	Triggering Frepuency Range	Min Signal Required	
		int	Ext
AC	30 Hz to 10 MHz 10 MHz to 100 MHz	$\begin{array}{r} 0.3 \text { div } \\ -1.5 \text { div } \end{array}$	$\begin{array}{r} 100 \mathrm{mV} \\ 500 \mathrm{mV} \\ \hline \end{array}$
Ac LF Rej ${ }^{*}$	30 kHz to 10 MHz 150 kHz to 10 MHz 10 MHzz to 100 MHz	$\frac{0.3 \mathrm{div}}{1.5 \mathrm{div}}$	$\begin{array}{r} 100 \mathrm{mv} \\ 500 \mathrm{mv} \\ \hline \end{array}$
Ac HF Rej	30 Hz 1050 kHz	0.3 div	100 mV .
Dc	Dc to 10 MHz 10 MHz to 100 MHz	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.5 \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mv} \\ & 500 \mathrm{mv} \end{aligned}$

*' Will not trigger on sinewaves of three division or less Int or 1.5 V Ext below 120 Hz .
Single Sweep - Triggering requirements are the same as normal sweep. When triggered, sweep generator produces one sweep only until reset.
Internal Trigger Jitter - 1 ns or less at 75 MHz . External Trigger Input - Maximum Input Voitage: 500 V (do + peak ac), 500 Vp p ac ai 1 kHz or less. Input R and $\mathrm{C}: 1 \mathrm{M} 2$ within 2% and 20 pF within 2 pF . Level Range: At least +15 V to -1.5 V in Ext, at least +15 V to -15 V in Ext $\div 10$.

DELAYED SWEEP
Sweep Rate - Calibrated: $0.05 \mu \mathrm{~s} / \mathrm{div}$ to 0.5 s/div in 22 sleps (1.2 .5 sequence). $5 \mathrm{~ns} / \mathrm{div}$, the fastest calibrated sweep rate, is obtained with the X10Magnifier. Uncalibrated: Variable continuously between steps to at least 2.5 times the calibrated sweep rate. The variable control is internally switchable between main, delayed sweep, and variable main sweep holdoff.
Sweep Accuracy - Measured over the center eight divisions.

Time/Div	Unmagnified		Magnified	
	$\left\|\begin{array}{c} +15^{\circ} \mathrm{Cto} \\ +35^{\circ} \mathrm{C} \end{array}\right\|$	$\begin{array}{r} 0^{\circ} \mathrm{C} \text { to } \\ +50^{\circ} \mathrm{C} \\ \hline \end{array}$	$\left[\begin{array}{c} +15^{\circ} \mathrm{C} 10 \\ +35^{\circ} \mathrm{C} \end{array}\right.$	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +50^{\circ} \mathrm{C} \\ & \hline \end{aligned}$
0.5 s/div to 0.1 s/civ and $0.2 \mu \mathrm{~s} / \mathrm{div}$ to 0.05 us/div	4\%	5\%	4.5\%	6\%
$\begin{aligned} & 50 \mathrm{~ms} / \mathrm{div} \text { to } \\ & 0.5 \mu \mathrm{~s} / \mathrm{div} \end{aligned}$	3\%	4\%	3.5\%	5\%

Delayed Sweep Gate - Output Voltage: $\approx+3.5 \mathrm{~V}$ into at least $10 \mathrm{k} \Omega$ shunted by 100 pF or less, or 0.5 V into 50Ω. Risetime: 50 ns or less. Output R is 350Ω within 10%. Gate is available at the Dly'd Trig in connector when the delayed sweep source switch is set to int.

Triggering Sensitivity

Coupling	Triggering Frequency Range	Min Signal Required	
		Int	Ext
AC	30 Hz to 10 MHz 10 MHz to 100 MHz	$\begin{aligned} & 0.3 \text { div } \\ & 1.5 \text { div } \end{aligned}$	$\begin{array}{r} 100 \mathrm{mV} \\ 500 \mathrm{mV} \\ \hline \end{array}$
Dc	Dc to 10 MHz 10 MHz to 100 MHz	$\begin{aligned} & 0.3 \mathrm{div} \\ & 1.5 \mathrm{div} \end{aligned}$	$\begin{aligned} & 100 \mathrm{mV} \\ & 500 \mathrm{mv} \end{aligned}$

Internal Trigger Jitter - 1 ns or less at 75 MHz . External Trigger Input - Maximum Input Voltage: 500 V (dc + peak ac), $500 \mathrm{Vp-p} \mathrm{ac} \mathrm{at} 1 \mathrm{kHz}$ or less. Input R and C .1 M 2 within 2% and 20 pF within 2 pF . Level Range: At least +1.5 V to -1.5 V in Ext.

MIDED SWEEP

Sweep Accuracy - Within 2\% plus measured main sweep error Exclude the following portions of mixed sweep: First 0.5 div after start of main 5 weep display and 0.2 div or $0.1 \mu \mathrm{~s}$ (whichever is greater) after transition of main to delayed sweep.

EXT HORIZONTAL WPUT

Dellection Factor - $10 \mathrm{mV} /$ civ within 10% when in Ext, Mag X10; $100 \mathrm{mV} /$ div within 10% when in Ext; 1 V/div within 10% when in Ext $\div 10$.

Bandwidth

Coupling	Lower -3 dB	Upper -3 dB
$A C$	40 Hz	2 MHz
$A C$ LF Fiej	16 kHz	2 MHz
$A C$ HF Rej	40 Hz	100 kHz
$D C$	$D E$	2 MHz

TV SYNC
Option 05, TV Sync Separator Triggering Permits stable internal line or field rate triggering from displayed composite video or composite sync waveforms. Conventional waveform displays and measurements can be made from standard broadcast or closed circuit TV systems, domestic or international, with up to 1201 line, 60 Hz field rates. Individual lines may be displayed with delayed sweep features. The wide range of delayed sweeps permits accurate atternate-frame, colorburst observations in the PAL color system. Option 05 deletes ac line trigger and Exi $\div 10$ from trigger source.

CHARACTERISTICS (7850A)
Sweep Rates - $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$ in 25 steps ($1-2.5$ sequence). 5 ns/div, the fastest calibrated sweep rate, is obtained with the X10 Magnifier. Uncalibratect: Variable continuously between steps to at least 2.5 times the calibrated sweep rate.
Sweep Accuracy - Measured ovet center eight division, $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, with any 7000 Series mainframe. Derate accuracies by an additional 1% each for $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Tima/Div	Unmagnified	Magnified
5 sidiv to 1 s/div	4%	Unspecified
0.5 s $/ d i v$ to $0.5 \mu \mathrm{~s} /$ div	2%	3%
$0.2 \mu \mathrm{~s} /$ div $10 ~$	$0.05 \mu \mathrm{~s} /$ div	3%
4%		

TRIGGERING

Trigger Holdoff	
Minimum 5 sidrv to 1μ sidiv	2 times Time/Div setting or less
0.5μ sidiv to 50 nsidiv	$2.0 \mu s$ or less
Variable	Extends holdolf time through at least 2 sweep lengths for sweep rates of 20 msidiv or faster

Triggering Sensitivity*

Frequency Range*z			Min Signal Required

- 'Auto and Norm modes.
* Triggering frequency ranges are limited to the frequency of the vertical system when operating in the int mode.
-3 Witi not trigger on sinewaves of less than eight division internal, or 3 V Extemal, al or below 60 Hz .
- Triggering Frequency Range for dc coupling applies to trequencies above 30 Hz when operating in the Auto Triggering mode
Triggering Sensitivity (P-P Auto Mode)

	Triggering	Min Signal Required	
Coupling	Frequency Range	Int	Ext
Ac or dc	200 Hz to 50 MHz	0.5 div	125 mV
Ac or dc	50 MHz to 150 MHz	1.5 div	375 mV

Single Sweep - Triggering requirements are the same as normat sweep. When triggered, sweep gererator produces only ore sweep until reset.
Option 02, X-Y Display Capability - A front panel switch selects either normal sweep displays or $X \cdot Y$ cisplays. In the $X \cdot Y$ mode, the X and Y signals are applied to the inputs of a dual-trace vertical amplifier or two single-trace vertical amplitiers. The X signal is routed via the amplifier/mainframe trigger path to the 7B50A Option 02, and then to the mainframe horizontal amplifier for display.

ORDERING INFORMATION

7B53A Dual Time Base

$\$ 1,685$
Includes: Instruction manual (070-1342-01)
Option 05 - TV Triggering.
Includes: Instruction manual ($070-1471-\infty 0$).
7B50A Time Base
$+\$ 160$
$\$ 1,075$
Includes: Instruction manual (070-1986.00).
Option 02 - X•Y Display Capability $\quad \mathbf{\$ 1 0 5}$

7D13A

The 7D13A Digital Multimeter is designed for use in all 7000 Series oscilloscope mainframes with CRT readout. The 7D13A functions in any compartment.
The 7D13A measures dc volts, dc current, and resistance. It also measures temperature from a temperature sensor on the tip of the P6601 temperature probe. The temperature probe functions regardless of 7D13A mode or range setting and provides a frontpanel analog signal output of $10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ ($0^{\circ} \mathrm{C}=0 \mathrm{~V}$). Temperature may be measured simultaneously along with any other function.

When the 7D13A is used, the character generator traces out a $31 / 2$-digit display on the CRT and a legend for units such as $\mathrm{k} \Omega$, $\mathrm{mA},{ }^{\circ} \mathrm{C}$.

CHARACTERISTICS

Dc Voltage Range - 0 V to 500 V in four ranges. $3^{1 / 2}$-digit presentation of $1.999 \mathrm{~V}, 19.99 \mathrm{~V}$, 199.9 V , and 500 V full scale. Accuracy is $\pm 0.1 \%$ of reading ± 1 count from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$, $\pm 0.2 \%$ of reading ± 2 counts from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Input impedance is $10 \mathrm{M} \Omega$ on all ranges. Maximum safe input is 500 V peak between either contact and ground, 500 V peak between voitage contacts.

Dc Current Range - OA to 2 A in four ranges. $31 / 2$-digit presentation of $1.999 \mathrm{~mA}, 19.99 \mathrm{~mA}$, 199.9 mA , and 1999 mA full scale. Accuracy is $\pm 0.5 \%$ of reading ± 2 counts from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}, \pm 0.7 \%$ of reading ± 4 counts from $0^{\circ} \mathrm{C}$ $10+50^{\circ} \mathrm{C}$. Maximum input is 3 A (fuse protected).
Resistance Range - 0Ω to $2 M \Omega$ in five ranges. $3 / 2$-digit presentation $199.9 \Omega, 1999 \Omega$, $19.99 \mathrm{k} \Omega, 199.9 \mathrm{k} \Omega$, and $1999 \mathrm{k} \Omega$ full scale. Accuracy is $\pm 0.5 \%$ of reading ± 1 count from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}, \pm 0.8 \%$ of reading ± 2 counts from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. Input is fuse protected.
Temperature Measurement Range $-62^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ in one range. $31 / 2$-digit presentation to $+200^{\circ} \mathrm{C}$.

7D13A Operating Conditions	Temperature Value Measured	Measurament Accuracy
$\begin{aligned} & +18^{\circ} \mathrm{C} \text { to }+28^{\circ} \mathrm{C} \\ & \text { (room temperature) } \end{aligned}$	$-62^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\pm 2^{\circ} \mathrm{C}$
	$+150^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C},-6^{\circ} \mathrm{C}$
$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to }+18^{\circ} \mathrm{C} \\ & +28^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C} \end{aligned}$	$-62^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$	Add $1.5^{\circ} \mathrm{C}$ to abcove tolerance in each direction

- Probe canbrated to the instrument.

Settling Time - is or less (voltage, current, and resistance modes).
Polarity - Automatic indication.
Maximurn Common-Mode Voltage - 500 V peak between two terminals and ground.
Normal-Mode Rejection Ratio - At least 30 dB at 60 Hz .
Common-Mode Rejection Ratio - With a $1 \mathrm{k} \Omega$ imbalance, at least 100 dB at $\mathrm{dc} ; 80 \mathrm{~dB}$ at 60 Hz . Over Range Indication - When over range α curs, the readout blinks and the most significant digit displays a three.
Temperature Out $-10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ into a load of at least $2 \mathrm{k} \Omega$.

ORDERING INFORMATION

7D13A Digital Multimeter

\$1,280
Includes: Pair of test leads ($003-0120-00$); P6601 Temperature Probe package (010.6601-01); instruction manual (070.3972.00)

7A13

Differential Comparator Amplifier

7A13

Dc to 105 MHz Bandwidth
$1 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$
Calibrated Deflection Factors
$1 \mathrm{M} \Omega$ Input Switchable to α
20,000:1 CMRR
$10,000 \mathrm{~cm}$ Effective Screen Height
The 7A13 is a differential comparator amplifier which provides dc to 105 MHz bandwidth in all the 7100 and 7900 Family instruments. It incorporates a number of features which make it particularly versatile, especially in multitrace combination with other 7000 Series vertical plug-ins.

The 7A13 has constant bandwidth over the $1 \mathrm{mV} /$ div to $5 \mathrm{~V} /$ div defiection factor range. The bandwidth is selectable to Full or 5 MHz for best displayed noise conditions for lowfrequency applications.
As a differential amplifier the 7A13 provides a balanced (+ and -) input for applications requiring rejection of a common-mode signal. The CMRR is $20,000: 1$ from dc to 100 kHz , derating to $200: 1$ at 20 MHz . The unit can reject up to 10 V of common-mode signal at a deflection factor setting of $1 \mathrm{mV} /$ div, increasing to 100 V at $10 \mathrm{mV} / \mathrm{div}$ (X 10 Vc pulled) and 500 V at $0.1 \mathrm{~V} / \mathrm{div}$.
As a comparator amplifier the 7A13 provides an accurate (0.1%) positive or negative internal offsetting voltage of up to $\pm 10 \mathrm{~V}$. This precision offset voltage effectively provides a screen height of 10,000 div at $1 \mathrm{mV} / \mathrm{div}$. The offset voltage is also available as an output for external monitoring.

CHARACTERISTICS
Bandwidth - DC Coupled: 105 MHz \{ $1 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$).
Input R and $\mathrm{C}-1 \mathrm{M} \Omega$ within 0.15%; $\approx 20 \mathrm{pF}$ Rin $\approx \infty$ is available in the 1 mV to $50 \mathrm{mV} / \mathrm{dv}$ range, selectable by an internal switch.
Deflection Factor - Calibrated: $1 \mathrm{mV} / \mathrm{div}$ to 5 Vidiv in 12 steps ($1 \cdot 2 \cdot 5$ sequence). Accuracy is within 1.5% with gain adjusted at $1 \mathrm{mV} / \mathrm{div}$. Uncalibrated: Variable continuously between steps to a maximum of at least $12.5 \mathrm{~V} / \mathrm{div}$.
Maximum Input Gate Current $-0^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}: 0.2 \mathrm{nA}$ or less. $+35^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}: 2 \mathrm{nA}$ or less.
Dc Stability - Dritt with Ambient Temperature (Line Voltage Constant): $2 \mathrm{mV} / 10^{\circ} \mathrm{C} 10$ 0.2 divi $10^{\circ} \mathrm{C}$ or less, (whichever is greater). Drift with Time (Ambient Temperature and Line Voltage Constant): Short term is 1 mV p-p or 0.1 div or less (whichever is greater) over any one minute interval after 20 minute warm-up. Long term is 1 mV p-p or 0.1 division or less (whichever is greater) during ary one hour interval after 20 min ute warm-up.

Signal Range

Deflection Factor Seltings	$\begin{gathered} 1 \mathrm{mV} \text { to } \\ 50 \mathrm{mV} / \mathrm{d} \mathrm{v} \end{gathered}$	10 mV to 50 mV iciv ($\times 10 \mathrm{Vc}$ out) and 0.1 V 10 0.5 Vidiv	$\begin{aligned} & 0.1 \mathrm{~V} \text { to } \\ & 0.5 \mathrm{~V} \text { Vciiv } \\ & \text { (x10 Vc out) } \\ & \text { and } 1 \mathrm{~V} \\ & \text { to } 5 \text { Vidiv } \end{aligned}$
Cormnonmode Signal	$=10 \mathrm{~V}$	$\pm 100 \mathrm{~V}$	$\pm 500 \mathrm{~V}$
Maximum DC Coupled input ($\mathrm{dc}+\mathrm{c}$ peak ac at 1 kHz or less)	$\pm 40 \mathrm{~V}$	$\pm 400 \mathrm{~V}$	$\pm 500 \mathrm{~V}$
Maximum AC Coupled Inpu: (dc voltage)		$\pm 500 \mathrm{~V}$	

Displayed Noise (Tangentially Measured) With $\times 10 \mathrm{Vc}$ In: $400 \mu \mathrm{~V}(200 \mu \mathrm{~V}$ RMS $)$ or less at 1 mV idiv, 0.2 div or 1033 al 2 mV diviv to $5 \mathrm{mV} / \mathrm{div}_{\text {; }}$ 0.05 div or less at 10 mV idiv to $5 \mathrm{~V} / \mathrm{div}$. With X 10 Vc Out 0.4 div or less at $10 \mathrm{mV} / \mathrm{div}$ to $0.5 \mathrm{~V} / \mathrm{div}$.
Overdrive Recovery - 1μ s to recover to within 2 mV and 0.1 ms to recover to within 1 mV after a pulse of $\pm 10 \mathrm{~V}$ or less at $1 \mathrm{mV} / \mathrm{div}^{2}$ only, regardless of pulse duration.
Internal Comparison Voltage - Range: 0 V to $\pm 10 \mathrm{~V}$. Accuracy: $\pm(0.1 \%$ of setting $+3 \mathrm{mV})$. Vc Output R: $\approx 15 \mathrm{k} \Omega$.

Common-Mode Rejection Ratio

At least 2000. 1, $10 \mathrm{mV} /$ div to 50 mV (X 10 Vc out) and $0.1 \mathrm{~V} /$ div to $5 \mathrm{~V} / \mathrm{div}$. Ac coupled input at least $500: 1$ at 60 Hz .
ORDERING INFORMATION
7A13 Amplifier
Includes: instruction manual (070 -1940-02; ;

For floating measurements, order A6902B Isolator. See page 437 for complete description.

For recommended probes see poges 191 and 426 .
For 7000 Series vertical system specifications see page 190.

P6055

20,000:1 CMRR 10X with Readout

Dc 1060 MHz
Low Capacitance
High CMRR
Compact Size
The P6055 is a miniature, low-capacitance, 10X probe designed for use with Tektronix differential amplifiers with nominal input capacitances from 20 pF to 47 pF . The attenuation ratio is adjustable to compensate for differences in input resistance of the amplifier (the amplifier input resistance must be $1 \mathrm{M} \Omega \pm 2 \%$). A special locking type readout connector allows the probe to be used with instruments with or without readout capability.
When two P6055 Probes are used to drive the two inputs of a differential amplifier, the ability to change the attenuation ratio of one probe versus the other is helpful in maintaining the CMRR of the system. The use of a matched pair of P6055 differential probes provides the best possible system CMRR.

CHARACTERISTICS

Maximum Useful Bandwidth - 60 Milz .
Risetime -5.8 ns .
Input Capacitance - $\approx 10 \mathrm{pF}$ when used with instrument that has 20 pF input capacitance: 12.5 pF wher used with instrument that has 47 pF input capacitance.
Attenuation - Adjustable to 10X.
Input Resistance - $1 \mathrm{M} \Omega \pm 0.5 \%$.
CMRR - 20,000:1 from dc to 1 kHz derating to 100:1 at 20 MHz .
Maximum Voltage $-500 \mathrm{~V}(\mathrm{dc}+$ peak ac) from dc to 12 MHz . P.p voltage derates to 100 V at 70 MHz .

ORDERING INFORMATION
 P6055 10X, 3.5 ft , Differential Probe.

Order 010-6055-01
$\$ 275$
Includes: Retractable nook tip (BB, 013 0107.05), 13 cm (5 inch) ground lead ($17500124-01$), two electrical insutating sleeves (BP, 166-0404-01): Iwo alligator clips (AS, 344-0046-00); probe holder (352-0090-00): adjusiable tool (CP, 003.0675.01); hook tip (BU, 206-0114-00); 13 cm (6 inch) electrical ground lead (DF, 175-1256-00); 30 cm (12 inch) ground lead (175-0125-01): instruction manual (070 -1115-00).
Matched Pair of P6055 Probes.
Order 015-0437-00
\$535

To order, call your locat Tektronix Salen Otfice, or call Tek's National Marketing Center, ioll free: 1-800-426-2200, Ext 99. In Oregon call collect: (503) 627-9000, Ext 99.

[^0]: * As tip of $10 x$ probe with readout compensation.

